

Modeling Ancient Settlement Systems

Examine the dynamics of development and sustainability or demise of settlement systems in both the rain-fed northern and irrigated southern regions of ancient Mesopotamia.

Mesopotamia as testbed for study of <u>long-term</u> human-environment interactions.

Apply complex adaptive systems, agent-based modeling techniques in a new, holistic simulation framework, to model fine-scale interactions among diverse natural processes and social processes on a daily basis across multi-generational timespans.

- The Oriental Institute of the University of Chicago
- Argonne National Laboratory
- The University of Edinburgh (UK)

Five-year National Science Foundation

Biocomplexity in the Environment research grant

Mesopotamian Study Regions

Our Collaborative Development Process

Subject domain data and conceptual models derived from:

EXTENSIVE SITE SURVEYS

CENTURIES OF TEXTUAL RECORDS

ETHNOGRAPHY AND CULTURAL ANALOGS

"ENKIMDU"

HOLISTIC AGENT-BASED SIMULATION FRAMEWORK

... named in honor of the ancient Sumerian god of agriculture and irrigation

Argonne National Laboratory Advanced Simulation Technologies Center

- Computer Modeling and Simulation Expertise
- Advanced Object-Based Discrete Event Simulation Frameworks:

A facility for constructing simulations for complex, heterogeneous domains

A toolkit for constructing models of complex social behavior patterns

Enabling Technologies: DIAS and FACET

DIAS and **FACET** together: a platform for building complex discrete event simulations with interacting social and natural system components. DIAS and FACET are:

- object-based, distributed, implemented in standard Java
- domain-neutral (not tied to a specific discipline or subject area)
- applications since 1996 include the following:

Integrated land management and land use planning at military training bases

Health care: agent-based physiological, clinical and logistical simulations

Avian social dynamics for an endangered species

Integrated oceanic and littoral systems simulation

Adaptive agent simulations for counter-drug operations analysis

Agricultural and social sustainability of ancient urban centers

Adaptive agent simulations for study of Joint Operating Concepts and Architectures

Agent-based agroeconomic analysis and planning tools for modern Thailand

The DIAS Modeling Paradigm

A DIAS problem domain representation consists of:

Software **objects** that represent the entities that comprise the domain

Simulation **models** that express the behaviors of the domain entities

The models communicate only with domain objects, and not with each other – Thus easy to add models, swap models in and out without re-coding.

For added flexibility, models are *not* built directly into the objects they serve. Instead they are linked to objects on-the-fly at run time, based on simulation context

More on Key DIAS Design Features

FACET: Characteristics of Societal Processes

Societal processes often seem to operate on the **EDGE OF CHAOS** ... this is quite a challenge for modeling and simulation.

FACET explicitly addresses many of the distinctive characteristics of *societal* processes (in contrast to "natural," or physics-based processes):

- Processes usually involve some level of cooperation among participating "agents" (e.g., Persons or Organizations).
- Agents may be concurrently involved in several behavior patterns and may need to prioritize their interactions and commitments to be able to participate in these patterns.
- Behavior patterns may branch to follow several alternative paths and may segue into other patterns, based on social context.
- Processes can be interrupted or preempted to be resumed later, or abandoned for more context-appropriate activities.

Basic Structure of FACET Models

FACET Course Of Action (COA) objects represent social behavior patterns

COA model: network of individual steps, represented by "Step" objects.

Steps are essentially sub-models.

Each Step is like a scene in a play, with cast of characters (agents), props (agents' resources), and locale.

Each Step:

Requires resources held by agents participating in the action;

Consumes a specified interval of time, during which the agents and resources are committed to the step and thus unavailable for other activities;

Results in changes to the attribute values of some of the participants, and/or changes to attribute values of other domain objects that had been declared to be of interest to the COA.

Scope and Scale of Simulations

SCOPE: Individual small settlements up to whole regions (> 100 km)

SCALE: Entity-Level Resolution and Granularity

- Individual households and persons as independent social agents
- Individual crop fields, domesticated fauna

SCALE: Process and Temporal Resolution

- Daily weather, hydrologic and soil processes, vegetation dynamics
- Daily to sub-daily (hours, minutes) tracking of detailed household tasks and social interactions

ENKIMDU Simulation Representation of Key Domain Objects and Their Dynamic Behaviors

(MASS: Modeling Ancient Settlement Systems Group)

Temporal Texture of Modeled Concurrent Natural and Societal Processes

ENTITY	PROCESS	AUG	SEP	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL
Atmosphere	Weather	ШШ	ШШШ	ШШШ	ШШШ	ШШШ	ШШШ	ШШШ	ШШШ	ШШ	ШШШ	ШШШ	ШШ
Landscape	Hydrology	ШШ	ШШШ	ШШШ	ШШШ	ШШШ	ШШШ	ШШШ	ШШШ	ШШШ	ШШШ	ШШШ	ШШ
	Heat, Moisture Exchange	ШШ	ШШШ	ШШШ	ШШШ	ШШШ	ШШШ	ШШШ	ШШШ	ШШШ	ШШШ	ШШШ	ШШ
Field	Soil Evolution, Erosion	ШШ	ШШШ	ШШШ	ШШШ	ШШШ	ШШШ	ШШШ	ШШШ	ШШШ	ШШШ	ШШШ	ШШ
340	Vegetation Growth	ШШ	ШШШ	ШШШ	ШШШ	ШШШ	ШШ	ШШШ	ШШШ	ШШШ	ШШШ	ШШШ	ШШ
Fauna	Foraging	Foraging				ШШШ	ШШ						
2000	Lambing, Lactation, etc.					J		N	l		1		
Person	Marriage, Role Change, etc.				IE I	j							
600	Childbirth, Death, etc.				1		I IIVI						
	Agricultural Tasks		III	111 1111	ШШ	1111	j	I	1	l l	ШШ	ШШ	111
	Pastoral Tasks	ШШ	ШШШ	ШШШ	ШШШ	ШШШ	ШШШ	ШШШ	ШШП	ШШШ	ШШШ	ШШШ	ШШ
Household	Stress Checks	J		11	l l	1		ı		1		111 1	1
	Coping Adaptations							1				1 1	
120	Granary Spoilage		I		- 1		1		Ţ		1		T
	Assign Fields (<i>mushá</i>)	Ī											
Community	Assign Pastures	ШШ	ШШШ	ШШШ	ШШШ	ШШШ	ШШШ	ШШШ	шиш	ШШШ	ШШШ	ШШШ	ШШ
	Update Exchange Rates	J	1	1	1	1	1	1	1	1	1	ı	1

TICKMARKS INDICATE MODELED INVOCATION OF THE PROCESS BEHAVIOR

Approximate number of instances of this type in the Beydar settlement simulations

Example of a Simulated Natural / Social Process Interaction

Composition of Household Agent Objects

Demographic and Kinship-Based Social Processes Simulated in ENKIMDU

 Population generator: based on attested demographic models for ancient Mediterranean populations; Household characteristics from census data for Roman Egypt

Modeled Processes:

- Birth rates
- Death probabilities by age, gender
- Household structure: five major types: *Multiple, Extended, Nuclear, Unrelated, Solitary*
- Age- and gender-dependent person role changes
- Marriage
- Inheritance
- Household restructuring and evolution; fission and aggregation
- Kin-gifts of food and labor

Subistence-Based Social Patterns: Household Agricultural and Pastoral Tasks

Agriculture

- Household crop fields owned or assigned by community lottery (mushá).
- Attempt to grow grain if possible; try to overproduce → safety margin.
- Households form task-specific work crews for crop tasks: clear and level the field, plow, sow, weed and maintain, harvest, and process harvest for storage.

Pastoralism

- Multi-household Herding Cooperative agents manage daily tasks: assemble herd, drive it to/from pasture, disperse it to its households. Herd sizes generally 100 to 300 animals.
- Livestock consumption: feasts, herd culling, and as a last-ditch coping measure. Dairy products also consumed daily.

Household Agents' Agricultural Social Pattern Models

Planting a barley crop: a household coping response to perceived <u>future</u> food stress

These two models are implemented using Argonne's FACET framework

Household Perceptions: Food Sufficiency

Sufficiency(N days) = Expected Food Available (now to now + N days)

Expected Food Consumption (now to now + N days)

Expected Food Available =

Household Perceptions: Food Stress

```
Define Stress(N days) =
1 - Sufficiency(N days)
... but not < 0.
```

Household Stress Checks:

- Periodic, as function of stress levels
- After any change in household resources or structure
- Short Term Food Stress = Max(Stress(3 days), Stress(10 days))
- Medium Term Food Stress = Max(Stress(30 days), Stress(100 days)
- Long Term Food Stress = Stress(L days)
 Where L = number of days till just before <u>harvest after next</u> ...
 thus ~ 1 to 2 years ahead

A Household's repertoire of coping responses can be quite different for different stress time scales...

Household Agent Adaptive Behavior Examples

Household agents' perception of sustainability stress can drive them to initiate complex behavior patterns, as here ...

Exchange

Kin Gifts

- Household Agents can call on their close kin for non-reciprocal assistance.
- Preference order for requests: father, patrilineal uncles, brothers, patrilineal cousins, mother, matrilineal uncles, matrilineal cousins.

Reciprocal Exchange

- Household Agents prefer their established Exchange Partners but will exchange with any other cooperative agent.
- Both parties must perceive a significant benefit in exchanges.
- Exchange rates vary by time and by Market (e.g., Local and Ephemeral Markets).

Wage Labor

• Exchange is reciprocal; day labor is paid each day in grain.

Grain Loans

Loans due to be repaid in kind, with interest (~ one-third of principal) after next harvest.

Northern Mesopotamian Pilot Site: Tell Beydar

Computer Model of Bronze Age Tell Beydar

A reconstruction based on site surveys and regional analogs:

Tell Beydar Field Layout

Surrounding the Tell Beydar settlement site to a radius of roughly 2 km:

337 fields averaging about 3 ha each → 1,000 ha total

Fields excluded from basalt highlands to west and from courses of major wadis

Soils: calciorthid silty loam; alluvial in wadis; thinly covered basalt formations to west.

Other Key Data Sources And Assumptions

Weather: 100 years of daily weather synthesized from longrun Mosul, Iraq climatological data.

Crops: Barley only, with botanical parameters adjusted for archaic genotypes.

Livestock: Sheep and goats, with zoological parameters typical of Middle Eastern varieties.

ENKIMDU's Currently Available Output Streams

Geospatial Animation Displays

Queryable, with zoom, pan, etc.; fine temporal resolution down to one simulation minute update interval

Settlement Annals Nomadic Community Annals Household Annals

Summaries of activities by year, month and/or n-day period, in Excel spreadsheet format

Ephemeral Market Summaries

Summaries of exchanges by day and/or for entire market duration, in Excel spreadsheet format

Ephemeral Market: e.g., exchanges between nomads and townspeople during a two-week visit to a town by a nomadic group

Household Diaries

Year-by-year chronological narrative description of all significant activities of each household and its members

Key to Household Diary Results

Beydar Baseline Run: A Modeled Household's Time History Shows Turbulent Social Dynamics

Snapshots from Tell Beydar 100-Year Baseline Simulation: Households' Daily Agricultural and Pastoral Activities

Households' Daily Agricultural and Pastoral Activities - I

Households' Daily Agricultural and Pastoral Activities - II

Households' Daily Agricultural and Pastoral Activities - III

Households' Daily Agricultural and Pastoral Activities - IV

Tell Beydar 100-Year Baseline Scenario

Initial Population: 501 persons in 99 households; 1,188 initial livestock, 12 per household.

Fields allocated to households via *mushá* (community field lottery) system. Biennial fallowing strictly observed by all households. Ard plow or hoe used for tillage.

no exceptional environmental or societal stresses are imposed.

Tell Beydar Scenario Variant Studies

- Chronically recurring harvest blight
- Acute five-year drought
- Chronic farm production bottleneck (plow team availability)
- Corvee episode (→ labor shortage at harvest)
- Diphtheria epidemic

Scenario Variant: Harvest Blight

This scenario variant assumes the presence of a chronically recurring harvest blight:

- Random patches of 1 km radius
- Harvest loss 80 90 pct. within patches
- Annual probability of blight ~ 50%
- Areal coverage of patches ~ 50%
 - → space/time average crop loss ~ 20%

Chronic stress drove households to more frequent use of exchange-based coping mechanisms

	Livestock Sold Per Year Per Household	Grain Gifts Per Year Per Household	Grain Loans Per Year Per Household
Baseline Case Mean	0.0966	0.0599	0.3488
Blight Case Mean	0.1542	0.0845	0.4602
Blight / Baseline	1.60	1.41	1.32

Blight case population curve is flat: 2% drop over 100 years

Scenario Variant: Severe Drought

In this scenario, a severe drought (precipitation ~ 100 mm/yr) was imposed for simulation years 8 through 12.

Lower yields during drought prompted households to extensify: increase area planted in grain to offset per-hectare yield shortfalls.

Households also temporarily increased volume of transactions: kin gifts, livestock sales, and grain loans.

The model settlement was ultimately resilient; population was stable during the drought, and resumed slow rise thereafter. Biennial fallowing and availability of additional farm land likely helped to mitigate the crisis.

Scenario Variant: Plow Team Bottlenecks

This variant tests the sensitivity of the settlement to availability of a critical resource: plow teams.

For baseline run, plow team / household ratio was 0.5.

Note the strong aggregate system response as a "hidden" resource constraint is reached

Scenario Variant: Corvee Episode

For this variant, 90% of the adult males were removed from the settlement, from March through August of Year 10, and then returned – but were unavailable at harvest time

Much of the Year 10 harvest was left in the field.

Short-term adaptive response: increases in grain transactions, liquidation of herds

How did individual households cope with this dilemma?

"Two households, both alike in dignity ... "

From ENKIMDU Household Diary Output:

William Shakespeare, Romeo and Juliet, Act I, Scene 1

HOUSEHOLD NUMBER 1 DIARY FOR YEAR 2

Head: carl1(51) 9 Member(s): Fa: carl1(51) Mo: amanda2(40) Off:(brad9(3) ted7(17) nina8(5)) Fa: samson3(24) Mo: bernice4(21)

isabella6(27) rocko5(39) Close Kin: Mo:26 Br:5 4

Resources: field shares: 5.0 stored grain: 1744.1 kg

9 sheep 4 goat(s)

98 > MARRIAGE: rocko5(39) has married delilah438(22) /H87

98 > delilah438(22), new wife of rocko5(39) moves in

111 > A family unit departs to form a new household: Fa: samson3(24) Mo: bernice4(21)

111 > A family unit departs to form a new household: Fa: rocko5(39) Mo: delilah438(22)

238 > MARRIAGE: isabella6(27)
has married rocko158(22) /H33
238 > isabella6(27), new wife of rocko158(22) /H33
moves out to join her husband

240 > Grain gift of 47.9 kg given to son (H110)

HOUSEHOLD NUMBER 21 DIARY FOR YEAR 2

Head: john97(54) 10 Member(s): Fa: fabio99(23) Mo: barbela107(24) Fa: jerome102(16) Mo: nancy397(17) Fa: john97(54) Mo: mary98(49)

Off:(herman101(8) ursula103(5) bambi104(6))

gigi100(63)

Resources: field shares: 4.0 stored grain: 2475.8 kg

5 sheep 3 goat(s)

0 > A family unit departs to form a new household: Fa: fabio99(23) Mo: barbela107(24)

161 > Grain gift of 136.7 kg given to son (H109)

246 > Grain gift of 136.7 kg given to son (H109)

328 > Grain gift of 18.5 kg given to son (H33)

328 > Grain gift of 121.2 kg given to son (H33)

Year 10: The Year of the Corvee Episode

HOUSEHOLD NUMBER 1 DIARY FOR YEAR 10

Head: carl1(59) 4 Member(s): Fa: carl1(59) Mo: amanda2(48) Off:(brad9(11) nina8(13))

Close Kin: Br:5 4

Exchange Partners: 130 138 21

Resources: field shares: 2.0 stored grain: 3135.1 kg

1 goat(s)

7 > Provided 113.4 kg grain to H21 in exchange for a goat

several livestock transactions omitted

336 > MARRIAGE: nina8(14) has married george452(16) /H66

336 > nina8(14) , new wife of george452(16) /H66 moves out to join her husband

354 > Grain gift of 6.8 kg given to p nephew (H114)

354 > Grain gift of 40.4 kg given to p nephew(H114)

Household 1 has a stronger reserve heading into a crisis year ...

HOUSEHOLD NUMBER 21 DIARY FOR YEAR 10

Head: john97(62) 4 Member(s):

Fa: john97(62) Off:(herman101(16) ursula103(13))

gigi100(71)

Exchange Partners: 2 100 88 1

Resources: field shares: 2.0 stored grain: 1363.1 kg

2 goat(s)

7 > Provided a goat to H1 in exchange for 113.4 kg grain

26 > Grain gift of 42.4 kg given to son (H129)

37 > DEATH: gigi100(71)

37 > Provided 123.5 kg grain to H1 in exchange for a goat

37 > MARRIAGE: ursula103(14) has married george15(19) /H2

37 > ursula103(14) , new wife of george15(19) /H2 moves out to join her husband

57 > Provided a goat to H1 in exchange for 123.5 kg grain

57 > Provided a goat to H1 in exchange for 123.5 kg grain

122 > MARRIAGE: herman101(17) has married tara464(14) /H116

122 > tara464(14) , new wife of herman101(17) moves in

Year 11: In the Wake of the Corvee Episode

HOUSEHOLD NUMBER 1 DIARY FOR YEAR 11

Head: carl1(60) 3 Member(s):

Fa: carl1(60) Mo: amanda2(49) Off:(brad9(12))

Close Kin: Br:4

Exchange Partners: 130 138 21 88

Resources: field shares: 2.0 stored grain: 1314.5 kg

2 goat(s)

6 > Provided a goat to H138 in exchange for 109.8 kg grain

79 > Provided 77.7 kg grain to H88 in exchange for a goat

96 > Provided a goat to H138 in exchange for 77.7 kg grain

303 > Grain gift of 65.7 kg given to son (H110)

Household 1 shares its largesse ...

... while Household 21 struggles

HOUSEHOLD NUMBER 21 DIARY FOR YEAR 11

Head: john97(63) 3 Member(s): Fa: herman101(17) Mo: tara464(14)

john97(63)

Exchange Partners: 2 100 88 1

Resources: field shares: 2.0 stored grain: 56.7 kg

64 > Obtained grain loan of 47.9 kg from H137

79 > Obtained grain loan of 46.0 kg from H123

79 > Obtained grain loan of 1.9 kg from H22

334 > Repaid 63.9 kg of grain loan in full to H137

334 > Provided 52.7 kg grain to H2 in exchange for a goat

several livestock transactions omitted

334 > Repaid 61.3 kg of grain loan in full to H123

334 > Repaid 2.6 kg of grain loan in full to H22

354 > Provided a goat to H152 in exchange for 62.2 kg grain

364 > Provided a goat to H130 in exchange for 62.2 kg grain

Year 14: Aftermath

HOUSEHOLD NUMBER 1 DIARY FOR YEAR 14

Head: carl1(63) 4 Member(s): Fa: brad9(15) Mo: cynthia50(15) Fa: carl1(63) Mo: amanda2(52)

Close Kin: Br:4

Exchange Partners: 130 138 21 88 110 45 123 Resources: field shares: 2.0 stored grain: 567.8 kg

36 > Provided 104.7 kg grain to H110 in exchange for a goat

126 > Provided 112.0 kg grain to H123 in exchange for a sheep

361 > Grain gift of 52.0 kg given to sib (H170)

HOUSEHOLD NUMBER 21 DIARY FOR YEAR 14

Head: john97(66) 4 Member(s): Fa: herman101(20) Mo: tara464(17) Off:(lisa798(1))

john97(66)

Exchange Partners: 2 100 88 1 137 123 22 152 130

151 110

Resources: field shares: 2.0 stored grain: 202.9 kg

322 > HOUSEHOLD DISSOLVED

... Household-level details, more than aggregate community-level properties, decided household sustainability

Scenario Variant: Diphtheria Epidemic

A simulated diphtheria epidemic struck in Year 20 of this variant, killing 80 percent of the children and infants in the settlement.

Stress drove households to more and more exchanges:

Settlement population growth failed to recover, even after three generations

Summary of Stress Scenarios

Scenario Name	Type of Stress	Description of Stress Scenario	Response of Simulated Settlement			
Blight	Chronic Environmental Stress	Recurring harvest blight, variable in space and time	Different households affected differently; increased use of exchange-based coping mechanisms			
Drought	Acute Environmental Stress	Severe 5-year drought	Temporary extensification of agricultur to offset reduced yields			
Plow Team Shortage	Chronic Societal Stress	Farm production bottleneck: plow team availability	Abrupt collapse of settlement as "hidden" critical resource threshold is reached			
Corvee Labor	Acute Societal Stress	External call for corvee labor: unanticipated labor shortage at harvest time	Increase in grain transactions; liquidation of herds; effects felt for many years after corvee episode			
Diphtheria Epidemic	Acute Demographic Shock	Diphtheria epidemic: sudden decimation of settlement's children	Weakening of kinship networks; more non-kin exchanges; delayed shortage of farm labor; slow decline			

Major Ongoing Project Tasks

- Expand studies to sub-region and region scale in Northern Mesopotamia
- Implement and test
 Southern Mesopotamian
 pilot settlement model

- Strengthen the current agent representation e.g.:
 - stronger person-level (vs. household-level) agency;
 - agent motivations beyond subsistence;
 - emergence and perpetuation of elites
- New U. of Chicago / Argonne pilot study: modern Thai agroeconomics

Some Observations

BUILD MODEL -> TEST & RUN MODEL -> INTERPRET RESULTS ...

The most scientifically valuable part of this process may turn out to be the model-building phase!

As we attempt to include more and more complex real-world structures and mechanisms within our holistic simulations, we are uncovering more and more knowledge gaps -- technical issues that the scientific community has never before *needed* to resolve, and may never even have *identified* before. Discovering these is a good thing!

It appears that there could be *hundreds* of worthwhile dissertation topics waiting to be discovered in the process of constructing a modeling framework such as ENKIMDU. (We've found <u>dozens</u> already)

... And, Finally:

For further information, contact:

John Christiansen

Advanced Simulation Technologies Center Decision and Information Sciences Division Argonne National Laboratory 9700 S. Cass Avenue – Bldg. 900 Argonne, Illinois 60439-4832 USA (630) 252-3291; FAX (630) 252-6073

e-mail: jhc@anl.gov